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Abstract—A method is proposed for approximate calculations, concerning concentration dependent
diffusion with a power relation between diffusion coefficient and concentration (D, = m?). This method can
be applied to a desorption process in non-shrinking or shrinking systems with slab, cylindrical or spherical
geometry. The method is developed for desorption with a uniform initial concentration profile and Dirichlet
boundary conditions, i.e. constant surface concentration and symmetry with respect to the centre, central
axis or central plane of the system. The method can ultimately be used for predicting the time behaviour of-
average concentration and flux, resuiting in accurate approximations to the exact solutions, obtained by
analytical or numerical techniques.

NOMENCLATURE

power in concentration dependence of

diffusion coefficient;

beta function, incomplete beta function ;

density [kg/m?];

diffusion coefficient {m?/s];

efficiency desorption process;

time dependent part of the particular

solution of the diffusion equation;

F, flux parameter;

4, space dependent part of the particular
solution of the diffusion equation;

G, flux function;

H, shrinkage factor;
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J, mass flux [kg/m?s];

m, dimensionless concentration ;
n, mass flux {kg/m?s];

r, space coordinate [m];

R,  radius or half-thickness of the system [m];

Shy, average Sherwood number of the dispersed
phase;
t, time [s];

X, geometry variable.

Greek symbols

v, geometry parameter;
¢, dimensionless space coordinate;
P mass concentration [kg/m?];
1, dimensionless time.
Subscripts
<, centre;
1, interface ;
m, migrating component ;
o, initial ;

Q, ° referring to inflection point Q;

r, reduced;
s, non-diffusing reference component;
S, refers to maximum S.
Superscripts
-, average value;
*, referring to shrinking systems;
™ nth derivative.

1. INTRODUCTION

THE usuAaL approach for solving nonlinear dif-
fusion problems is the application of numerical
techniques, which as a rule are only suitable for high-
speed large-memory computers and require the nec-
essary programming skill. In practice it would there-
fore be convenient when approximate methods, based
on straightforward computational procedures are
available for this class of problems in order to avoid
time consuming programming and computing.

This paper is concerned with the construction of
such a computational procedure for desorption in
non-shrinking or shrinking slabs, cylinders and
spheres, which does not involve numerical techniques
to solve the nonlinear partial differential equation
describing the diffusion process. Although the method
developed here is restricted to diffusion coefficients
which are power functions of the concentration, this
specific case is one of considerable interest for non-
linear diffusion in porous media, a topic which has
received much attention in mathematical analysis in
the last ten years, due to its importance in oil
engineering and hydrology [1-7]. Other fields of
possible applications are diffusion of vapours in high-
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polymer substances [8], drying of porous materials
[9-11] and nonlinear heat diffusion in metals as
aluminium and iron [12]. Furthermore, the appro-
ximate method is restricted to desorption with a
uniform initial concentration profile and Dirichlet
boundary conditions, also known as boundary con-
ditions of the first kind.

Other approximate methods were reported by Su-
zuki et al. [9], who developed a model for low-intensity
drying of slabs, based on the assumption of a pseudo
steady state, and by Schoeber [ 10, 11], who introduced
a general method for a short-cut calculation of the
mass flux in nonlinear diffusion problems. The basic
concept of Schoeber’s method is the combination of
the “short time solution”, usually referred to as the
penetration period, and the “large time solution”,
referred to as the regular regime.

The same concept of combining these two limiting
solutions served as a basis for this paper, although the
transition between the two solutions, as well as the
effect of shrinkage were approached in a different way.

An analysis of the numerical solution resulted in a
simplified model for the specific case of nonlinear
diffusion, mentioned above. The computational pro-
cedure involved merely consists of a sequence of
straightforward calculations resulting in desorption
times for non-shrinking or shrinking slabs, cylinders
and spheres.

In the following sections we shall be concerned with
the formulation of the nonlinear diffusion problem
(section 2) and the construction of the approximate
method for non-shrinking and shrinking systems,
treated separately (section 3). Finally, in section 4, a
comparison is made between the results obtained by
the approximate method and those obtained by solv-
ing the partial differential equation by a finite
differences technique.

An extension of the present approximate method,
concerning the computation of the concentration
profiles during the desorption process will be treated in
a supplementary paper [16].

2. THE NONLINEAR DIFFUSION PROBLEM

2.1. The diffusion equation
A generalized formulation of the diffusion equation
[10] is expressed by the following relation:

2 (o) "
ot ¢ o

which holds for concentration dependent diffusion in
non-shrinking and shrinking slabs, cylinders and
spheres. Before proceeding we shall first define the
dimensionless variables, occurring in equation (1) for
non-shrinking and shrinking systems, respectively.

2.1.1. Non-shrinking systems. For non-shrinking sys-
tems a stationary coordinate system can be applied in
which the dimensionless concentration m is defined as

J. K. Liou and S. BRuiN

m=Lm 2)
pm.o
with p. the mass concentration of the migrating
component at time ¢ and p,, the initial mass
concentration.
The dimensionless time 7 is defined as

Dt

T—RZ,

3)

where D, represents a reference value of the diffusion
coefficient and R the radius or half-thickness of the
system.

The dimensionless space coordinate ¢ is defined as

r v+l
6= (R;) @

with r the space coordinate and v a geometry para-
meter, having the values 0, 1 and 2 for slab, cylinder and
sphere, respectively.

The dimensionless diffusion coefficient D, is defined
as

b, =5 (5)

[

with D the diffusion coefficient.
Finally, the dimensionless geometry variable X is
defined as

X = (v+ g e+, 6)

2.1.2. Shrinking systems. For shrinking systems the
application of a reference component mass centered
coordinate system avoids the complication of a moving
boundary [13]. In this coordinate system the dimen-
sionless concentration m is now defined as

)

with p, the mass concentration of a non-diffusing
reference component s. If the density of this reference
component does not change upon mixing, the dimen-
sionless time 7 can be defined as

D 2
oPs,0 ¢

T 2R?

®)
with p, , the initial mass concentration of reference
component s, d, the density of the reference component
and R, the radius or half-thickness of the system in case
the mass concentration of the reference component
would be equal to its density. This so-called “dry solids
radius” R, is related to the initial radius R, of the

system by
1Av+1)
R, =22 R,. 9
E TR e

The dimensionless space coordinate ¢ is now defined

as
r R

¢ =f psr"dr/ f pridr =
0 0
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v+1 4 )
=p RT prrdr. (10)
The dimensionless diffusion coefficient is defined as
D 2
, =L (11)
Dypso

and the dimensionless geometry variable X as

& vAv+1)
X=(v+1)” <1+%m)d¢} (12)
(4] dmps,o

2.2. Initial and boundary conditions

The generalized formulation for the diffusion equa-
tion has to be applied to the initial and boundary
conditions as well. In this paper we restrict ourselves to
Dirichlet boundary conditions (boundary conditions
of the first kind) and the initial condition of a uniform
initial concentration profile. This set of conditions in
dimensionless form then reads:

m=my=1 fort=0 and 0<¢p 1 (13)
om
X— =0 fort>0 and ¢ =0 (14)
d¢
m=m; =0 for t>0 and ¢ =1. (15)

3. AN APPROXIMATE METHOD FOR THE
COMPUTATION OF THE MASS FLUX AND
DESORPTION TIME

3.1. Non-shrinking systems

For the nonlinear diffusion equation with D, = m?,
no explicit general solution in terms of known func-
tions could be derived analytically. For a slab,
however, a particular solution exists, which represents
the “large time solution”, but is only applicable when
the centre concentration starts to deviate appreciably
from the initial centre concentration (regular regime).
By putting m(¢, 1) = f(1)g(¢), this particular solution
can be found after separation and subsequent solution
of the space and time dependent parts. The derivation
of this particular solution will not be given here, but
will be accommodated in a supplementary paper [16].
When we assume the regular regime to be valid at time
79, when the average concentration has arrived at a
value i, the particular solution reads:

L /fa+1 1 . a
m(¢11) = EB ({1 +2 ) §>gr(¢) I:mQ + ﬁ

1 ., fa+11 -l
X i B 2<a+—2’5>(’_’0)] (16)
with
g9(¢) _g(¢)
-2 &Y 17
0O = 0 = (17

which follows from the implicit equation:
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a+1 1) <a+1 1> .
==z =B,z )1-¢) withz=g*2.
<a+2 2 a+2 2 (18)

B

The functions B and B, represent the beta and
incomplete beta function, respectively [14, 15]. They
can be expressed by infinite series, according to

(zn)' zn+(a+1)/(u+2)

B <a+1 1)_(a+2> i
\a+2"2 a+1) =, 2%(n!)? n(a+2>+l

a+1
(19)
and
a+l 1\ /a+2\ & (2n)! 1
B(EIE’ 5)‘ <a+1> ,‘;, 227(n1)? <a+2>
nf— |+ 1
a+1
(20

The average value of g, follows from integration by
parts of equation (18) (see Appendix A), resulting in

5 = # 1)

9r .
a+1 1
B y =
a+2 2
Consequently the average concentration as a function
of time becomes

_ . a 1
Tt e

er2fatl 1N ~l
B <a+2,2>(r rQ)] . (22)

The mass flux now follows from the mass balance

.
M _Fx,

dr ' @)

with
(24)

inwhich X; = v + 1and F represents a flux parameter,
which is related to the mass flux n,, ; by

N, iR
Pm.oDs

F= (25)

For a slab (v = 0), the flux parameter F, according to
equations (22) and (23) then becomes

+1 1
Be+? c — 5)»-,““. (26)

1 1
Ta+2 2%

Analytical solutions, similar to equations (22) and (26)
are however not available for cylinder and sphere. Still,
useful approximations can be constructed for these
cases including the case of a slab as will be shown in the
following equations.

Schoeber [10, 11] defined an average Sherwood
number for the dispersed phase in the following way:
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Sh,=——— 27
4= G~ myD, @7)
with
_ 1 "
D, =— D,dm. (28)
m—nm; Jm

For m; = 0and D, = m% equation (27) can be rewritten
as

F Shd,a,v
T2+ 1)
For D, = m®, Sh,is a function of a and v only and for

the case of a slab, according to equations (26) and (29)
can be expressed explicitly by

a+ I\[1 _/fa+1 1\]°*?
haoo="4 -B , = .
Sha.a0 <a+2>|:2 <a+2 2)] (30)

For cylinder and sphere, Schoeber determined Sh,
numerically. Surprisingly, almost straight lines are
obtained when Sh, values are plotted vs a/(a + 2) as is
shown in Fig. 1, indicating an approximate linear
relationship:

a
Shy,,=Shyo, + (Shy .~ Shyo ) (4—*‘1 n 2) (31)

hat 1

(29)

in which Sh,, ., and Sh, . . represent the average
Sherwood numbers for a = 0 and a — =, respectively
and are listed in Table 1.

Inserting these values in equation (31) then results in
the following expressions:

n? + ela
Sh =———— (slab 32
da0 =" (slab) (32)
5
H eG/S
Sphere 4e

3
5.783

— e
277'

F1G. 1. The average Sherwood number for slab, cylinder and
sphere and different values of a. (O) numerical, (—) linear
approximation.
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11.566 + 4
Shy .. = vb T tea (cylinder) (33)
R a+?2
472 4 873
Shy ., = 3w e a (sphere). (34)
a+2

After substitution of equations (32)-(34) in equation
(29), simple expressions for the flux parameter F as a
function of the power a and the average concentration
are obtained. It must however be realized that these
approximate solutions do not cover the initial stage of
the desorption process.

For this part of the process, an approximation,
based on the short-time solution for a slab will be
established later. First, two auxiliary variagles are
introduced, i.e. the efficiency E and the flux function G

E=1-m (35)

EF
G = .
v+ 1

(36)

The particular solution for F, according to equation
(29), expressed in terms of E and G then becomes
Sh

G = d.a,v E(l

— _E)a+1.
2@+ v+ 1)

37

For the derivatives with respect to E of this flux
function G then follows:

1—(a+2E
n—-2

g ="t DE 1-KkG. (39

Fm e I Tl @ 1- b6, (9)

Obviously the flux function G possesses a maximum S
for

1

;= 40
ST a+2 (40)
and an inflection point Q for
2
E,= 41
) 1)

which values follow from equations (38) and (39).

Once again it is stressed that this solution does not
hold for the initial stage of the diffusion process. In
order to establish that part of the solution, we must
turn to the problem of determining the value of G in the
limit E — 0. This value is equal for slab, cylinder and
sphere, because the diffusion process at this stage takes
place in an infinitesimally thin shell at the interface
and

Table 1. The limit values of the average Sherwood
numbers for slab, cylinder and sphere

Slab Cylinder Sphere
v=0 v=1 V=
Shyo.. in? 5.783 in?
e? de ef?

d o5y
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consequently the influence of curvature is still
negligible.

lim G, =lim G, , = lim G,, =G,
E—0 E-0 E—-0Q

42)

For a constant diffusion coefficient (a = 0), G, can be
found analytically from the short time solution for a

slab [12]:

m=m, —2(m m)\ ) 43)
Substitution in equation (35) gives
T 172
E= 2( -) . (44)
\7!"/
While the flux parameter F becomes
dm 1 /t\"'7?
F=——=—(3) 45)
dt nm\=m
Substitution in equation (36) then results in
2
G,=-—. (46)
T

For values of a > 0, the limit value G, could not be
determined analytically. However, the following re-
lation appeared to be of sufficient accuracy:

Go = Ga.v,S + {G-O,v,O - GO‘V'S}z_a (47)

in which G, , , represents G, for a = 0 and G, , s the
particular solution of G in point S, according to
equation (37), which for a = 0 becomes

nz
16

Equation (47) then turns into

Sh a+ 1\ 2 2
G = d,a,0 {2 - -a
°= 2a+1)a+2) <a+2> (n 16)2 “9)

in which Sh, , o follows from equation (32).

So far we have established solutions for short and
large times. The problem that still remains, is how,
starting from the “short time solution” G, the function
G goes over into the particular solution belonging to
the regular regime. In order to solve this transition
problem we have to define a transition point belonging
to the regular regime. First we shall investigate the
bounds of the regular regime. The regular regime
possesses a lower bound due to the requirement that
the centre concentration must always be lower than
the initial centre concentration. In terms of the
efficiency E, the use of the regular regime solution is
therefore limited to the region E > E;. The efficiency
in terms of the centre concentration m, reads

Govs= (48)

E=1-m=1—-gm,. (50)

For the lower bound of the regular regime, cor-
responding to m. = 1 then follows:

E,=1-4,. (51)
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For a slab, g, can be evaluated by applying equation
(21). However, for cylinder and sphere, again no
relations are available. A satisfactory approximation

£ 1 fa5 0 £, 7
for values of a > 0 was found by plotting g,

e alla L
VB u/\u s

2), which resulted in almost straight lines (Fig. 2),
leading to the following relations for g, , ,:

(a) Slab

. _{a+2 \!a
gr,a,O - Kz + %eza
2
for a>0 and g,oo—;t— (52)
(b) Cylinder
__{a+2\"
gr.a - \2+gg/
for a>0 and g, ,,=04318. (53)
(c) Sphere
_ a+2 \'~
gr,a,2 - 2 + %espa
_ 3
for a>0 and §,,,= - (54)

In Figs 3-5, m_ is plotted vs E for slab, cylinder and
sphere and different values of a. In these diagrams also
the locations of the inflection points Q are indicated. It
can easily be proved that Q satisfies the condition E,
= E;forv =0,1,2and a = 0, which means that point
Q stays within the bounds of the regular regime and
can therefore be chosen as a transition point. As

1083
2€

Sphere >

o Cylinder

Fi1G. 2. The average reduced concentration for slab, cylinder
and sphere and different values of a. (O) numerical, (—)linear
approximation.
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oSlab Q

FiG. 3. Centre concentration m_ in the regular regime vs the
efficiency E for a slab and different values of a.

follows from equation (41) the location of point Q in
the E direction is independent of the geometry para-
meter v and a function of a only. For the transition
region 0 < E £ E, the function G is developed by
means of a Taylor series expansion about the origin
O{E =0,G = G,}:

G=G°+EGLI’+%E2G£,2’+... (55)
For a smooth transition in point @ the Taylor series
solution must at least satisfy the conditions: G = G,
and G = G’ in point Q. If these are the only
conditions imposed on the transition, appropriate
Taylor series approximations are:

(@) Slab
1 505 1 6,6
G =G, + —EG® + —E°G®. (56)
51 6!
@ 84 2 | 2 0 a
T
o Cylinder Q
g 0.54
0 T 0‘5 ' ' ' |

E

FiG. 4. Centre concentration m, in the regular regime vs the
efficiency E for a cylinder and different values of a.
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|
® 8 4 2 B 0 a

19 T
o Sphere Q

T T T

0 0.5 |
E

FiG. 5. Centre concentration m_ in the regular regime vs the
efficiency E for a sphere and different values of a.

The two unknown derivatives G.¥ and G'® are evalu-
ated with the aid of the two conditions in point Q,
leading to

6! E
G = o5 {GQ -G, ~ -6268’} (57)
Q
GO = 1 GW ,1_E4G(5) 58
o E(52 Q 4' QYo ( )

in which G, and G‘Q’) follow from equations (37) and
(38).

(b) Cylinder, sphere

1
G =G, + EGY + S E*G (59)
with
G = -21 Go,— G 1E G 60
o T 0 ot 5 ebe (60)
Q
and
1
G = {6 — G}, (61)
Q

The flux in the transition region follows from equation
(36) combined with equations (56) or (59). The de-
sorption time follows from the mass balance

dE
— =(v+ 1)F. (62)
dr
Integration then leads to
_ ! "l dE for 0OLEZE 63
Ty o F or 0=E=Ee (63)
and
=15+ ! EldE for E>E (64)
T=1, vl EQF or o
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¥
e

Shoer Ea(1-Ea™| |7 Sheay
Shagsfal1-Fa) HG - Shoze o 0-@e2) EQIH B’ |

Q+1 )“
a2

L 2(u+1)(a+2)

G‘S’:%ﬁo(sa-so-%ne‘;’)

66'= £ (Go-Go-20G])

l

J = E=1-f

i E
G‘é’:’ﬁ (Gq "72‘3(05}

G

2 1 1 Al
0 = E—Q(G(Q—G(o)

no yes

E>’EQ

yes @ no

(S) (6)
o= GO*_GO 720

L GO G EZG%’

o= Sy ETLEP
(a+T}{v+

.“
1
rmic

F-zm}g

VAR E 1
[ e/

2{asNIA-EV"

: -Eal 1
/‘ Y0 1510, Shegs /

Sto

F1G. 6. Computational procedure for a desorption process in slabs and non-shrinking cylinders or spheres.

We shall first consider the interval 0 £ E £ E;, and
elaborate equation (63) for slab, cylinder and sphere by
substitution of F.

(a) Slab

dE.

E
E
r=J B (65)
o e ()]
G, + 5,G

Unfortunately this integral cannot be transformed into
a simple algebraic expression. However, a simple
numerical evaluation using the trapezium rule already
gives satisfactory results.

6
+Ege
6t °°

(b) Cylinder, sphere

dE

1 fE E 66
T w+ 1}y G+ EGY + LE*GP (56)

1 1, (G Gw
To+1P[6PT\G) T 6a

1 JGVE + G = JG + q)ﬂ
T GPE+ 6D + JaGY — Vo)

with
q={G{"}* - 2G,G?.
If E = E, equations (65) and (66) can be used for the
calculation of 7, the value of which must be known for
the determination of the desorption time in the region
E > E,. Substitution of F according to equation (29)
in equation (64) results in
a+ 1)
v+ DaShy,,

x (1 —E)™*— (1 - EQ)™®}. (67)
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A complete outline for the computation of a de-
sorption process in slabs and non-shrinking cylinders
or non-shrinking spheres is given in Fig. 6.

3.2. Shrinking systems

When shrinkage of the system occurs during the
desorption process, the mass flux has to be corrected
for this phenomenon. Because the mass flux j,, ; in a
reference component mass centered coordinate system
is related to the flux parameter F* for shrinking
systems by

]m 1ds pRs
pm,oDops,o

the correction for shrinkage can directly be applied to
F*. The mass balance for shrinking systems reads:

pd
" _XxF* (69)

dr

F* (68)

in which

vi{v+ 1)
xi*=(v+1)<1+d—5’ﬁ£m> (70)

mps.o

and

om

= - X¥ 1
ren(3),
In the limit case T — 0, for all values of a = 0, the
concentration profile approaches the rectangular
shape of the initial profile, whereas the influence of
shrinkage is still negligible implying the following
relation :

F* F

lim — = 7
i X7 =i X, (72)
or
. . X* ds mo vivt1) .
lim F* = lim 2 F = (1 + 2£me limF. (73)
=0 =0 Xi dmps,o =0
We define the shrinkage factor H by
F*
H="—. 74
F (74)

From equation (73) then follows:

d p vAv+ 1)

l + s#’m,o .
< dmps o> (75)
It was found by Schoeber that the correction for

shrinkage in the regular regime can be described
accurately by

H, =1limH=
=0

AShy
Shd.a,v

in which
d vAv+ 1)
ASh, = Shd.m'\,{<1 + d_sﬁ:—-%ﬁ) - 1} 77

and Sh, , ,representing the average Sherwood number

for

E>E, (76)

T =
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for a non-shrinking system. The transition between the
two limits of H can be constructed by the following
Taylor series expansion :

E? E?
H=H, + —Z—HEP’ +—€Hf,3’ for 0SEZE,

(78)
with
6 E
HY = E;{HQ -H, - —fH‘é’} (79)
Q
HY = Ei {H‘é’ - EQH?’}. (80)
Q

Finally, the shrinkage factor H in the regular regime,
expressed in terms of the efficiency E becomes

vi{v+ 1)
Hl 4+ dsPmao (g —E)} - 1]
v AP0

E>E, (81)

for

The determination of the desorption time now offers
no more problems. Integration of the mass balance

leads to
vi(v+ 1)]-
—22(1 —E)} ] dE

for 0SE<SE, (82)

1 E dp vty 1) -1
| P14 %Pme g
(v+1>Lu[ { dp )}‘ ] 4

for E>E, (83)

spmo

RIS 7

(v+1)

and

In Fig. 7 the computational procedure for shrinking
systems is presented.

4. A COMPARISON BETWEEN THE RESULTS
OBTAINED WITH THE APPROXIMATE METHOD AND
OBTAINED NUMERICALLY

The exact solution was obtained by solving the
diffusion equation numerically, using finite differences
and the Crank—Nicolson implicit method with vari-
able implicitness [10, 11].

The approximate solution was obtained by straight-
forward calculations, following the computation
procedures as indicated in Figs. 6 and 7. In Figs 8-10
the flux function G is plotted vs the efficiency E for slab,
cylinder and spher= and for different values of a. As can
be seen, hardly any differences occur between the exact
(numerical) and approximate solutions. The same
conclusion can be drawn for a shrinking sphere (Fig.
11), for which also the desorption time was calculated
as a function of the efficiency E by the approximate
method and compared with the exact solution
(Fig. 12).

Eventually an improvement in computational speed
of a factor 1000 was observed by applying the ap-
proximate method instead of the numerical method
mentioned above.
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/V a,M,ds, dn,Pso, Pmo /

IShan T}J—:z_eu Shd M

R SN IE P
1 566+4e a hya 2= /3Ttu:e .a’
J

Shgay.Eg (1-Egi®T} M _ Shgae
] MHQ Shaesto, 105 = Jhied o (1- @D 1-E
; ]
=1y 2Ddap Dmo B 1 _dsPme vV Shgg, (q,d s
Hy= 1+ Zplee((1e g ds 2 (1-Eg)) 711 —>fHG ;pso Vel S ”*a‘;%’if“ )
T

Go= Flas1l@sd) as?

¥
Shga o aslot 2 !
< —) {5 Ty izt

I
‘G?_ —-(GQ Go )HGm

G“‘ &) ]

Hg}=%§(ﬁg}-EQH‘§))

1H: Hg+ %?« ng%i Hg]—l

G*'=HG F*=H.F

[H=1 Shd~ [(1+ai‘imn £ -1 ]

[ﬁ’jH_G}——% F=H.F g=TlEg) 1

-
= €.+ds -vE_T =To+L [E[E*1.9 o
/:-moj [Fn[ﬁfn ENTeT] dE7 /1: T V*’Ea[ [F'(1 _;P_':.ﬁm £))- ]d/

Sto

F1G. 7. Computational procedure for a desorption process in shrinking cylinders or spheres.

From these observations we may conclude that the
approximate method developed here gives accurate
results, the computational effort for the determination
of the desorption time being reduced to pocket
calculator level.

REFERENCES

1. L. A, Peletier, Asymptotic behaviour of temperature
profiles of a class of nonlinear heat conduction problems,
Q. Jl Mech. Appl. Math. 23, 441-447 (1970).

2. L. A. Peletier, Asymptotic behaviour of solutions of the
porous media equation, SIAM JI Appl. Math. 21,
542-551 (1971).

3. F. V. Atkinson and L. A. Peletier, Similarity profiles of
flows through porous media, Archs Ration. Mech. Ana-
lysis 42, 369-379 (1971).

4.

10.

C. L van Duyn and L. A, Peletier, A class of similarity
solutions of the nonlinear diffusion equation, Nonlinear
Analysis, Theory, Methods and Applications 1, 223-233
(1977).

. L. F. Shampine, Concentration dependent diffusion I, Q.

Appl. Math. 31, 441-452 (1973).

. L. F. Shampine, Concentration dependent diffusion I, Q.

Appl. Math. 31, 287-293 (1973).

. L. F. Shampine, Concentration dependent diffusion 11,

Q. Appl. Math. 33, 429-431 (1976).

. J. Crank, The Mathematics of Diffusion, 2nd edition,

Clarendon Press, Oxford (1975).

. M. Suzuki and 8. Maeda, An approximation of transient

change of moisture distribution within porous materials
being dried. First Int. Symp. Drying. Montreal, Canada,
pp. 42-47 (1978).

W. J. A. H. Schoeber, Regular regimes in sorption
processes. Ph.D. Thesis, Technical University Eindhoven,
The Netherlands (1976).



1218 J. K. Liou and S. BruiN

Sl ab W‘—‘_—_ﬁ——“'h“_RVAM T

° Sphere
- Numerical
~-- R.R solution
° Approximation
02

— Numerical
--- R R solution
°o  Approximation

a
‘O | /
10
T 2
Q
4
o NE . |
E E
FiG. 8. The function G (see text) vs the efficiency E for a slab. FiG. 10. The function G vs the efficiency E for a sphere.
o i
Cylinder Shrinking sphere
— Numerical —— Numerical
---R.R. solution o Approximation
02 o Approximation 0 41 dsPrm,0

=1l

P

F1G. 9. The function G vs the efficiency E for a cylinder. FiG. 11. The function G* vs the efficiency E for a shrinking
sphere.



Computation of desorption times 1219

13. J. van der Lijn, Simulation of heat and mass transfer in
spray drying. Ph.D. Thesis, Agricultural University Wa-
geningen, The Netherlands (1976).
103 14. M. Abramowitz and 1. A. Stegun, Handbook of Ma-
thematical Functions. Dover, New York (1970).
15. I. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals,
Series and Products, 4th edition, Academic Press, New
York (1965).
0 16. J.K. Liou and S. Bruin, An approximate method for the
o nonlinear diffusion problem with a power relation be-
tween diffusion coefficient and concentration —II. Com-
4 putation of concentration profiles, Int. J. Heat Mass
Transfer 25, 1221-1229 (1982).
T
107!
APPENDIX A
Derivation of the average value of g,
The average value of g, is determined by
1
10* 9. = ‘[ g9.d¢ (Al)
i o
withat ¢ =0,g9,=landat ¢ =1,9,=0.
Integration by parts of equation (A1) then leads to
Shrinking sphere 1
1073 Numerical g_r — J ¢ dg, (Az)
b ° Approximation o
:_:g:_': = with according to equation (18):
0 OE5 | Bz (a +1 ‘ 1)
a+2 2
FiG. 12. The desorption time z vs the efficiency E for a ¢=1- TZa+1 1V (A3)
shrinking sphere. (a 2 5)
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UNE METHODE APPROCHEE DE RESOLUTION DU PROBLEME DE DIFFUSION NON
LINEAIRE AVEC UNE LOI PUISSANCE ENTRE LE COEFFICIENT DE DIFFUSION ET LA
CONCENTRATION—L. CALCUL DES TEMPS DE DESORPTION

Résumé—On propose une méthode pour le calcul approché de la concentration qui dépend de la diffusion
par une loi puissance (D, = m?). Cette méthode peut étre appliquée au mécanisme de désorption dans des
systemes qui se contractent ou non, avec, une géométrie plane, cylindrique ou sphérique. La méthode est
développée pour une désorption partant d’un profil de concentration uniforme et des conditions de Dirichlet,
c’est-a-dire concentration uniforme a la surface et symétrique par rapport au centre,:d I'axe ou au plan
médian du systéme. La méthode peut étre utilisée pour prévoir I'évolution au cours du temps de la
concentration et du flux, avec 'approximation des solutions exactes, obtenues par des techniques analytiques
ou numériques.

EINE NAHERUNGSMETHODE ZUR LOSUNG DES NICHTLINEAREN
DIFFUSIONSPROBLEMS MIT EINER POTENZBEZIEHUNG ZWISCHEN
DIFFUSIONSKOEFFIZIENT UND KONZENTRATION—I. BERECHNUNG VON
DESORPTIONSZEITEN

Zusammenfassung—Es  wird eine Methode fiir die ndherungsweise Berechnung der
konzentrationsabhingigen Diffusion mit einer Potenzbeziehung zwischen Diffusionskoeffizient und
Konzentration (von der Form D, = m®) vorgeschlagen. Diese Methode kann auf den Desorptionsvorgang in
nicht-schrumpfenden oder schrumpfenden Systemen mit Platten-, Zylinder- oder Kugelgeometrie
angewandt werden und wird entwickelt fiir die Desorption bei anfinglich gleichférmigem
Konzentrationsprofil und Dirichlet-Randbedingungen d.h. konstante Oberflichenkonzentration und
Symmetrie in bezug auf das Zentrum, die Mittellinie bzw. die Mittelebene des Systems. SchlieBlich kann die
Methode verwendet werden, um das Zeitverhalten von mittlerer Konzentration und mittlerem
Diffusionsstrom zu berechnen, was zu recht genauen Approximationen der exakten Losung, die man
analytisch oder numerisch erhilt, fiihrt.
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NPUBJMXEHHLIA METOJ PEMIEHWUA 3AJAYM HEJMHEAHOU JHUOOVY3UM IPU
CTETIEHHOW 3ABUCUMOCTYU KO3GOGUIIMEHTA AUG®Y3IUM OT KOHLIEHTPALIUU.
I. PACHET BPEMEHH JECOPBUUH

Annoranus — [Ipennoxkes mMeTon NpHONMKEHHOro pacdeTa KOHLEHTpaluu B 3ajgade auddysuu npu
CTeneHHOM 3aBUCHMOCTH ko3pduiHenTa nuddy3uu ot koHUeHTpanun (Dr = m“), KOTOPbIA MOXET ObITH
HCIIONB30BAH JUIA OMHMCaHWs Mpollecca AeCOPOUMH B CHCTEMax C ycaakoil M Oe3, uMerolux ¢opMy
IUIACTHHBI, UMJIHHApPA MM wapa. Meroa paspaboran ans mponecca gecopbuu mpu OJHOPOIHOM
HavaJbHOM NMpodHie KOHLUEHTPAUHM U yCIOBHAMH JIMpHXJIe Ha IPAaHULE, T. €. NOCTOAHHON KOHUEHTpA-
UMM BEILECTBA HA MOBEPXHOCTH H YCIOBHAMH CHMMETPHH N0 OTHOLIEHUIO K UEHTPY, UEHTPAJIbHON OCH
WIH LEHTPalbHOM MIOCKOCTH CHCTEMbI. B KOHEYHOM cCueTe, €ro MOXHO WCIOAb3OBATH WIS pacyeTa
BPEMEHHOH 3aBHCHMOCTH CPelHeH KOHLUEHTPALHH H BEJIMYHHBI [IOTOKA, NIPHYEM pPe3YyNbTaThl XOPOLLO
COTJIACYIOTCA C AHAJIMTHYECKMMHU U YHCJIEHHBIMH DELIEHHAMM.



