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Abstract-A method is proposed for approximate calculations, concerning concentration dependent 
diffusion with a power relation between diffusion coefficient and concentration (II, = m’). This method can 
be applied to a desorption process in non-shrinking or shrinking systems with slab, cylindrical or spherical 
geometry. The method is developed for desorption with a un~orm initial con~ntmtion profile and Di~chlet 
boundary conditions, i.e. constant surface concentration and symmetry with respect to the centre, central 
axis or central plane of the system. The method ten ultimately be used for predicting the time behaviour of. 
average concentration and flux, resulting in accurate approximations to the exact solutions, obtained by 

analytical or numerical techniques. 

NOMENCLATURE a - referring to inflection point Q; 

a, power in concentration dependence of r, reduced ; 

diffusion coefficient ; s, non-diffusing reference component ; 

B, B,, beta function, incomplete beta function ; s, refers to maximum S. 

- density [kg/m31 ; 
diffusion coefficient [m”/s] ; 
efficiency desorption process; 
time dependent part of the particular 
solution of the diffusion equation; 
flux parameter ; 
space dependent part of the particular 
solution of the diffusion equation ; 
flux function ; 
shrinkage factor ; 
mass flux [kg/m’ s] ; 
dimensionless concentration ; 
mass flux [kg/m2 s] ; 
space coordinate [m] ; 
radius or ham-thi~kne~ of the system [m] ; 
average Sherwood number of the dispersed 
phase; 
time [s] ; 
geometry variable. 

Greek symbols 

v, geometry parameter ; 
49 dimensionless space coordinate; 

P, mass concentration [kg/m31 ; 
7, dimensionless time. 

Subscripts 
G centre; 

1, interface; 

m, migrating component ; 
0, initial ; 

Superscripts 
_ 

*’ 
average value ; 

(4 
referring to shrinking systems; 
nth derivative. 

I. IN~ODU~ON 

THE USUAL approach for solving nonlinear dif- 
fusion problems is the application of numerical 
techniques, which as a rule are only suitable for high- 
speed large-memory computers and require the nec- 
essary programming skill. In practice it would there- 
fore be convenient when approximate methods, based 
on str~ghtforward computational procedures are 
available for this class of problems in order to avoid 
time consuming programming and computing. 

This paper is concerned with the construction of 
such a computational procedure for desorption in 
non-shrinking or shrinking slabs, cylinders and 
spheres, which does not involve numerical techniques 
to solve the nonlinear partial differential equation 
describing the diffusion process. Although the method 
developed here is restricted to diffusion coefficients 
which are power functions of the concentration, this 
specific case is one of considerable interest for non- 
linear diffusion in porous media, a topic which has 
received much attention in mathematical analysis in 
the last ten years, due to its importance in oil 
engineering and hydrology [l-7]. Other fields of 
possible applications are diffusion of vapours in high- 



1210 J. K. LIOU and S. BRUIN 

polymer substances [8], drying of porous materials 
[9-111 and nonlinear heat diffusion in metals as 
aluminium and iron [12]. Furthermore, the appro- 
ximate method is restricted to desorption with a 
uniform initial concentration profile and Dirichlet 
boundary conditions, also known as boundary con- 
ditions of the first kind. 

Other approximate methods were reported by Su- 
zuki er al. [9], who developed a model for low-intensity 
drying of slabs, based on the assumption of a pseudo 
steady state, and by Schoeber [lo, 111, who introduced 
a general method for a short-cut calculation of the 
mass flux in nonlinear diffusion problems. The basic 
concept of Schoeber’s method is the combination of 
the “short time solution”, usually referred to as the 
penetration period, and the “large time solution”, 
referred to as the regular regime. 

The same concept of combining these two limiting 
solutions served as a basis for this paper, although the 
transition between the two solutions, as well as the 
effect of shrinkage were approached in a different way. 

An analysis of the numerical solution resulted in a 
simplified model for the specific case of nonlinear 
diffusion, mentioned above. The computational pro- 
cedure involved merely consists of a sequence of 
straightforward calculations resulting in desorption 
times for non-shrinking or shrinking slabs, cylinders 
and spheres. 

In the following sections we shall be concerned with 
the formulation of the nonlinear diffusion problem 
(section 2) and the construction of the approximate 
method for non-shrinking and shrinking systems, 
treated separately (section 3). Finally, in section 4, a 
comparison is made between the results obtained by 
the approximate method and those obtained by solv- 
ing the partial differential equation by a finite 
differences technique. 

An extension of the present approximate method, 
concerning the computation of the concentration 
profiles during the desorption process will be treated in 
a supplementary paper [16]. 

2. THE NONLINEAR DIFFUSION PROBLEM 

2.1. The difli&on equation 
A generalized formulation of the diffusion equation 

[lo] is expressed by the following relation : 

which holds for concentration dependent diffusion in 
non-shrinking and shrinking slabs, cylinders and 
spheres. Before proceeding we shall first define the 
dimensionless variables, occurring in equation (1) for 
non-shrinking and shrinking systems, respectively. 

2.1.1. Non-shrinking systems. For non-shrinking sys- 
tems a stationary coordinate system can be applied in 
which the dimensionless concentration m is defined as 

m2!E (2) 
Pm.0 

with p, the mass concentration of the migrating 
component at time t and P,,,~ the initial mass 
concentration. 

The dimensionless time t is defined as 

where D, represents a reference value of the diffusion 
coefficient and R the radius or half-thickness of the 
system. 

The dimensionless space coordinate 4 is defined as 

/#.\‘+I 

with r the space coordinate and v a geometry para- 
meter, having the values 0,l and 2 for slab, cylinder and 
sphere, respectively. 

The dimensionless diffusion coefficient D, is defined 
as 

Dr=; 
0 

(5) 

with D the diffusion coefficient. 
Finally, the dimensionless geometry variable X is 

defined as 

x = (v + l)C#Jv@+? (6) 

2.1.2. Shrinking systems. For shrinking systems the 
application of a reference component mass centered 
coordinate system avoids the complication of a moving 
boundary [ 131. In this coordinate system the dimen- 
sionless concentration m is now defined as 

(7) 

with p, the mass concentration of a non-diffusing 
reference component s. If the density of this reference 
component does not change upon mixing, the dimen- 
sionless time T can be defined as 

(8) 

with ps,,, the initial mass concentration of reference 
component s, d, the density of the reference component 
and R, the radius or half-thickness of the system in case 
the mass concentration of the reference component 
would be equal to its density. This so-called “dry solids 
radius” R, is related to the initial radius R, of the 
system by 

(9) 

The dimensionless space coordinate 4 is now defined 
as 
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v+l ’ 

s ps,,R:+’ o 
psrY dr. (10) 

The dimensionless diffusion coefficient is defined as 

Dpf 
D, = ___ 

DlJ& 
(11) 

and the dimensionless geometry variable X as 

2.2. Initial and boundary conditions 
The generalized formulation for the diffusion equa- 

tion has to be applied to the initial and boundary 
conditions as well. In this paper we restrict ourselves to 
Dirichlet boundary conditions (boundary conditions 
of the first kind) and the initial condition of a uniform 
initial concentration profile. This set of conditions in 
dimensionless form then reads : 

m = M, = 1 for z = 0 and 0 5 4 5 1 (13) 

X* =0 for z>O and +=O 
a4 

(14) 

m = mi = 0 for 7 > 0 and IJ = 1. (15) 

3. AN APPROXIMATE METHOD FOR THE 
COMPUTATION OF THE MASS FLUX AND 

DESORPTION TIME 

3.1. Non-shrinking systems 
For the nonlinear diffusion equation with D, = m”, 

no explicit general solution in terms of known func- 
tions could be derived analytically. For a slab, 
however, a particular solution exists, which represents 
the “large time solution”, but is only applicable when 
the centre concentration starts to deviate appreciably 
from the initial centre concentration (regular regime). 
By putting m(4,7) = f(7)g (c$), this particular solution 
can be found after separation and subsequent solution 
of the space and time dependent parts. The derivation 
of this particular solution will not be given here, but 
will be accommodated in a supplementary paper [ 161. 
When we assume the regular regime to be valid at time 
7Q, when the average concentration has arrived at a 
value %i, the particular solution reads: 

with 

g(&@Qm 
r 

g(O) SC 

which follows from the implicit equation : 

(17) 

The functions B and B, represent the beta and 
incomplete beta function, respectively [14, 151. They 
can be expressed by infinite series, according to 

and 

(20) 
The average value of g, follows from integration by 
parts of equation (18) (see Appendix A), resulting in 

2 
s, = 

( > 

(21) 
B 

a+1 1 ’ - - 
a+2’2 

Consequently the average concentration as a function 
of time becomes 

[ 

a 1 
e= m,a+ -~ 

a+2 2’+l 

x Ba+2 r;, ;)(7 - 74'". (22) 

The mass flux now follows from the mass balance 

drii 

dt- 
- -FX, 

i 

(23) 

in which Xi = v + 1 and F represents a flux parameter, 
which is related to the mass flux n,,, by 

n .R 
F= L!L--. 

PllL,D, 
(25) 

For a slab (v = 0), the flux parameter F, according to 
equations (22) and (23) then becomes 

1 
F=--.-- LB+2 

a+2 2’+’ 
?+?+I. (26) 

Analytical solutions, similar to equations (22) and (26) 
are however not available for cylinder and sphere. Still, 
useful approximations can be constructed for these 
cases including the case of a slab as will be shown in the 
following equations. 

Schoeber [lo, 1 l] defined an average Sherwood 
number for the dispersed phase in the following way: 
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with 

Shd = (m ““,$j, (27) 

1 ni 
0, = ~ 

rii - mi s D, dm. (28) 
m, 

For mi = 0 and D, = ma, equation (27) can be rewritten 
as 

F= 
Shd.,,v -‘,+I 

2(a + 1) 

For D, = ma, Sh, is a function of a and v only and for 
the case of a slab, according to equations (26) and (29) 
can be expressed explicitly by 

Sh,,,,, = 4&)[;Lfs, t)l”“. (30) E=l-m (35) 

For cylinder and sphere, Schoeber determined Sh, 
numerically. Surprisingly, almost straight lines are 
obtained when Sh, values are plotted vs a/(a + 2) as is 
shown in Fig. 1, indicating an approximate linear 
relationship : 

Sk,.,,, = Sh,,,,, + (%,,,v - %,o,,.) 

in which Sh,,,.,. and Sh,, ~,, represent the average 
Sherwood numbers for a = 0 and a + Z, respectively 
and are listed in Table 1. 

Inserting these values in equation (31) then results in 
the following expressions : 

Sh,,,,, = $$ (slab) (32) 

, 4 

i 
05 I 

0 
a +2 

FIG. 1. The average Sherwood number for slab, cylinder and 
sphere and different values of a. (0) numerical, (-) linear 

approximation. 

Sh 
11.566 + 4ea 

d.o.1 = 
a+2 

(cylinder) (33) 

Sh 
$7r’ + e8j3a 

d.a.2 = 
a+2 

(sphere). (34) 

After substitution of equations (32)-(34) in equation 
(29), simple expressions for the flux parameter F as a 
function of the power a and the average concentration 
are obtained. It must however be realized that these 
approximate solutions do not cover the initial stage of 
the desorption process. 

For this part of the process, an approximation, 
based on the short-time solution for a slab will be 
established later. First, two auxiliary variagles are 
introduced, i.e. the efficiency E and the flux function G 

G=$ (36) 

The particular solution for F, according to equation 
(29) expressed in terms of E and G then becomes 

G= 
%+.a. v 

2(a + l)(v + 1) 
E(l - E)“‘. (37) 

For the derivatives with respect to E of this flux 
function G then follows: 

G(l) = ’ - (’ + 2)E G 

E(l - E) 
(38) 

G(n) = n - (a + W 
E(l - E) 

(--l)n+l n (a+ 1 - k)G. (39) 
k=O 

n-2 

Obviously the flux function G possesses a maximum S 
for 

1 
E, = ~ 

a+2 
(40) 

and an inflection point Q for 

2 
E, = ~ 

a+2 
(41) 

which values follow from equations (38) and (39). 
Once again it is stressed that this solution does not 

hold for the initial stage of the diffusion process. In 
order to establish that part of the solution, we must 
turn to the problem of determining the value of G in the 
limit E -+ 0. This value is equal for slab, cylinder and 
sphere, because the diffusion process at this stage takes 
place in an infinitesimally thin shell at the interface 
and 

Table 1. The limit values of the average Sherwood 
numbers for slab, cylinder and sphere 

Slab Cylinder Sphere 
v=o v=l v=2 

Sh,,o.> 
Sh d. 7 ,1 

$2 
e2 

5.783 
4e 
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consequently the influence of curvature is still 
negligible. 

lim G,,,,, = lim G,.i = lim G,,, = G,. (42) 
E-O E-O E-O 

For a constant diffusion coefficient (a = 0), G, can be 
found analytically from the short time solution for a 
slab [12] : 

Substitution in equation (35) gives 

While the flux parameter F becomes 

dfi 1 T -1’2 

F=-dr=-- . 0 n 7-C 

Substitution in equation (36) then results in 

G,,=f. 

(43) 

(44) 

(45) 

(46) 

For values of a > 0, the limit value G, could not be 
determined analytically. However, the following re- 
lation appeared to be of sufficient accuracy: 

G, = G,.,,s + {Go,,,0 - Go,,,s12-” (47) 

in which Go,,,, represents G, for a = 0 and G,,,,s the 
particular solution of G in point 5, according to 
equation (37), which for a = 0 becomes 

Go.,.s = $. (48) 

Equation (47) then turns into 

G, = 2(oT;);;+2) (=J+* + (; - ;> 2-a (49) 

in which Sh,,,,, follows from equation (32). 
So far we have established solutions for short and 

large times. The problem that still remains, is how, 
starting from the “short time solution” G,, the function 
G goes over into the particular solution belonging to 
the regular regime. In order to solve this transition 
problem we have to define a transition point belonging 
to the regular regime. First we shall investigate the 
bounds of the regular regime. The regular regime 
possesses a lower bound due to the requirement that 
the centre concentration must always be lower than 
the initial centre concentration. In terms of the 
efficiency E, the use of the regular regime solution is 
therefore limited to the region E 2 E,. The efficiency 
in terms of the centre concentration m, reads 

E = 1 - rii = 1 - &m,. (50) 

For the lower bound of the regular regime, cor- 
responding to m, = 1 then follows: 

For a slab, & can be evaluated by applying equation 
(21). However, for cylinder and sphere, again no 
relations are available. A satisfactory approximation 
for values of a > 0 was found by plotting 4;“~s a/(a + 
2), which resulted in almost straight lines (Fig. 2), 
leading to the following relations for S,,., ,,: 

(a) Slab 

Sr.o.0 = 

for a>0 

(b) Cylinder 

and &,o.o = ;. (52) 

for a > 0 and gr,.o,l = 0.4318. (53) 

(c) Sphere 

2 

for a>0 and R.0,2=-$. (54) 

In Figs 3-5, m, is plotted vs E for slab, cylinder and 
sphere and different values of a. In these diagrams also 
the locations of the inflection points Q are indicated. It 
can easily be proved that Q satisfies the condition E, 
1 E, for v = 0, 1,2 and a 2 0, which means that point 
Q stays within the bounds of the regular regime and 
can therefore be chosen as a transition point. As 

0. 2 
101 

I 

c 

4 

3- 

Sphere 

OS 

9 
01.2 

FIG. 2. The average reduced concentration for slab, cylinder 
and sphere and different values of a. (0) numerical, (-) linear . . 

(51) approxlmanon. E, = 1 - & 
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” 05 

842 Ih 00 

E 

FIG. 3. Centre concentration m, in the regular regime vs the 
efficiency E for a slab and different values of a. 

follows from equation (41) the location of point Q in 
the E direction is independent of the geometry para- 
meter v and a function of a only. For the transition 
region 0 < E 5 E, the function G is developed by 
means of a Taylor series expansion about the origin 
O{E = 0, G = G,} : 

G = G, + EG’,” + ;E’G’,2’ + (55) 

For a smooth transition in point Q the Taylor series 

solution must at least satisfy the conditions: G = G, 
and Go) = G$) in point Q. If these are the only 
conditions imposed on the transition, appropriate 
Taylor series approximations are : 

(a) Slab 

G = G, + ;ESGL5’ + ;E6G:6’. (56) 

I 

E” 0.5 

R 

FIG. 4. Centre concentration m, in the regular regime vs the 
efficiency E for a cylinder and different values of a. 

i” 

m 

-7 

T- 

84 2 I+ 0 0 

0 05 I 

E 

FIG. 5. Centre concentration M, in the regular regime vs the 
efficiency E for a sphere and different values of a. 

The two unknown derivatives Gb5) and Gb”) are evalu- 
ated with the aid of the two conditions in point Q, 
leading to 

(57) 

(58) 

in which G, and GG) follow from equations (37) and 

(38). 

(b) Cylinder, sphere 

G = G 
1 

0 + EG”’ + pE2Gt2’ 0 2 o (59) 

with 

Go-G,+;EQG8’ (60) 

and 

(3”’ zz L {Gb” _ G;“}, 

EQ 

The flux in the transition region follows from equation 
(36) combined with equations (56) or (59). The de- 
sorption time follows from 

dE 
x = (v 

Integration then leads to 

1 
r- 

s 

E I 
-dE 

v+l ,F 

and 

the mass balance 

+ l)F. (62) 

for 05 E 5 E, (63) 

1 

s 

E 1 
T=TSy+- 

v+l 
-dE for E > E,. (64) 

~~ F 
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( Start ) 
j. 

v, a,@ 

G 

1215 

E5 G=Go+QQ G;‘+ & 6:’ G=G,+E.G;!~*G" 

i 

2 0 

I 
F:; 

1' 

F=lv+l); 

I” +c!E, 

- > 

V 
(Stop > 

FIG. 6. Computational procedure for a desorptiou process in slabs and non-shanking cylinders or spheres. 

We shall first consider the interval 0 5 E s E, and 
elaborate equation (63) for slab, cylinder and sphere by 
substitution of F. 

(a) Slab 

s E E 
2= 

0 G + E5@5) + _@6' 
E6 dE- (65) 

' 5! ' 6! ' 

Unfortunately this integral cannot be transformed into 
a simple algebraic expression. However, a simple 
numerical evaluation using the trapezium rule already 
gives satisfactory results. 

(b) Cylinder, sphere 

E 

G, + EC;” + )E2G:” 
dE (W 

il 
with 

q = {G$“)’ - 2G,Gb2’. 

If E = E, equations (65) and (66) can be used for the 
calculation of zQ, the value of which must be known for 
the determination of the desorption time in the region 
E > E,. Substitution of F according to equation (29) 
in equation (64) results in 

2(a i- 1) 

T = % + (v + 1)cl Shd_ 

x ((1 - E)-” - (1 - E,)-“1. (67) 
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A complete outline for the computation of a de- 
sorption process in slabs and non-shrinking cylinders 
or non-shrinking spheres is given in Fig. 6. 

3.2. Shrinking systems 
When shrinkage of the system occurs during the 

desorption process, the mass flux has to be corrected 
for this phenomenon. Because the mass flux jm,i in a 
reference component mass centered coordinate system 
is related to the flux parameter F* for shrinking 
systems by 

(68) 

for a non-shrinking system. The transition between the 
two limits of H can be constructed by the following 
Taylor series expansion : 

H=Ho+~H~o)+~H~3) for OsEEEE, 

(78) 

with 

(79) 

the correction for shrinkage can directly be applied to 
F*. The mass balance for shrinking systems reads: 

dti __= 
dr 

-X?F* 

in which 

X~=(“+I)o+~Q~v+l) (70) 

and 

(71) 

In the limit case 7 + 0, for all values of a 2 0, the 
concentration profile approaches the rectangular 
shape of the initial profile, whereas the influence of 
shrinkage is still negligible implying the following 
relation : 

(72) 

or 

We define the shrinkage factor H by 

H=f_ 

From equation (73) then follows : 

H+$H=(l +%)‘*‘+“. (75) 

It was found by Schoeber that the correction for 
shrinkage in the regular regime can be described 
accurately by 

H = 1 +2 for E> E, (76) 
d,o,v 

in which 

Ash,., = %m,\, {(I + urns”“)_ Ij (77) 

and %,,,v representing the average Sherwood number 

Finally, the shrinkage factor H in the regular regime, 
expressed in terms of the efficiency E becomes 

Sh 
d H = 1 + s;;;;: 

[i 
1 +%(I -E)j++‘)- I] 

for E > E,. (81) 

The determination of the desorption time now offers 
no more problems. Integration of the mass balance 
leads to 

and 

for 0 5 E 5 E, (82) 

for E > E,. (83) 

In Fig. 7 the computational procedure for shrinking 
systems is presented. 

4. A COMPARISON BETWEEN THE RESULTS 

OBTAINED WITH THE APPROXIMATE METHOD AND 

OBTAINED NUMERICALLY 

The exact solution was obtained by solving the 
diffusion equation numerically, using finite differences 
and the Crank-Nicolson implicit method with vari- 
able implicitness [ 10, 111. 

The approximate solution was obtained by straight- 
forward calculations, following the computation 
procedures as indicated in Figs. 6 and 7. In Figs 8-10 
the flux function G is plotted vs the efficiency E for slab, 
cylinder and sphere and for different values of n. As can 
be seen, hardly any differences occur between the exact 
(numerical) and approximate solutions. The same 
conclusion can be drawn for a shrinking sphere (Fig. 
1 l), for which also the desorption time was calculated 
as a function of the efficiency E by the approximate 
method and compared with the exact solution 
(Fig. 12). 

Eventually an improvement in computational speed 
of a factor 1000 was observed by applying the ap- 
proximate method instead of the numerical method 
mentioned above. 
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J 
I 

_Shd.~u.E~(l-Ea)a" 
p Z(a+lf(v+l) 

$‘= Shdov o ‘2 a;i v+, [l-(a+Z]E~](l-Ed]* 

I 

CL3 sto 

FIG. 7. Computational procedure for a desorption process in shrinking cylinders or spheres, 

From these observations we may conclude that the 
approximate method developed here gives accurate 
results, the computational effort for the determination 
of the desorption time being reduced to pocket 
calculator level. 
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FIG. 8. The function G (see text) vs the efficiency E for a slab. FIG. 10. The function G vs the efficiency E for a sphere. 
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FIG. 11. The function G* vs the efficiency E for a shrinking 
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APPENDIX A 

Derivation of the average value of g, 
The average value of gr is determined by 

I 

I 
9, = gr W 

0 

with at $ = 0, gr = 1 and at 4 = 1, gr = 0. 
Integration by parts of equation (Al) then leads to 

I 

1 

s, = 441, 
0 

with according to equation (18): 

(AlI 

W 

l#J=l- 643) 

Evaluation of the right hand integral in equation (A2) finally 
results in 

2 
s, = (A4) 

B 

UNE METHODE APPROCHEE DE RESOLUTION DU PROBLEME DE DIFFUSION NON 
LINEAIRE AVEC UNE LO1 PUISSANCE ENTRE LE COEFFICIENT DE DIFFUSION ET LA 

CONCENTRATION-I. CALCUL DES TEMPS DE DESORPTION 

R&urn&On propose une mCthode pour le calcul approche de la concentration qui d&end de la diffusion 
par une loi puissance (D, = ma). Cette m6thode peut &tre appIiqu& au mlcanisme de disorption dans des 
systemes qui se contractent ou non, avec, une gkomttrie plane, cylindrique ou sphCrique. La mtthode est 
dbeloptie pour une dtsorption partant d’un profil de concentration uniforme et des conditions de Dirichlet, 
c’est-i-dire concentration uniforme B la surface et symttrique par rapport au centre,*8 I’axe ou au plan 
mddian du systkme. La mdthode peut etre utilisk pour pr&oir IXvoIution au tours du temps de la 
concentration et du flux, avec l’approximation des solutions exactes, obtenues par des techniques analytiques 

ou numbriques. 

EINE NAHERUNGSMETHODE ZUR L&SUNG DES NICHTLINEAREN 
DIFFUSIONSPROBLEMS MIT EINER POTENZBEZIEHUNG ZWISCHEN 

DIFFUSIONSKOEFFIZIENT UND KONZENTRATION-I. BERECHNUNG VON 
DESORPTIONSZEITEN 

Zusammenfassung-Es wird eine Methode fiir die ntierungsweise Berechnung der 
konzentrationsabhshgigen Diffusion mit einer Potenzbeziehung zwischen Diffusionskoetlizient und 
Konzentration (von der Form D, = m”) vorgeschlagen. Diese Methode kann auf den Desorptionsvorgang in 
nicht-schrumpfenden oder schrumpfenden Systemen mit Platten-, Zylinder- oder Kugelgeometrie 
angewandt werden und wird entwickelt fiir die Desorption bei anftiglich gleichfiirmigem 
Konzentrationsprofil und Dirichlet-Randbedingungen d.h. konstante OberlXchenkonzentration und 
Symmetrie in bezug auf das Zentrum, die MittelIinie bzw. die Mittelebene des Systems. SchIieBlich kann die 
Methode verwendet werden, urn das Zeitverhalten von mittlerer Konzentration und mittlerem 
Diffusionsstrom zu berechnen, was zu recht genauen Approximationen der exakten L6sung, die man 

analytisch oder numerisch erhiilt, fiihrt. 
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I-IPHNUiXEHHbl~ METOA PEIIIEHMIl 3AAA=IM HEJIMHEflHOti 4M@@Y3MM IlPW 
CTEI-IEHHO6i 3ABMCMMOCTM K03@QM~MEHTA ,4M@@Y3MM OT KOHUEHTPA~MM. 

I. PACrlET BPEMEHM flECOPIX(MM 

A~nmauwn- rlpeanoxeH MeTOn npe6JlsmeHHoro pameTa KOHUeHTpauHH B sanare ae+$ysae flpu 

CTeneHHOii JBBUCBMOCTH K03@~RUlleHTa JlU44ly3UU OT KOHUeHTpLiUHH (or = WI?, KOTOpbIii MOmeT 6blTb 

ACnOnb30BaH JRIJISI OnWCaHUR npouecca aecop6uae B CuCTeMaX c yCanKO% H 6e3, AMemuAX +OpMy 

nnacTkfHb1, winmnpa mui mapa. MeTon pa3pa60TaH nnr npouecca necop6uuu nprl 0nHoponHoM 

Ha'taJlbHOMnpO+iJle KOHueHTpaUHA H yCJlOBNRMll &tpuXJle Ha rpaHHue,T.C. nOCTOnHHOii KOHueHTpa- 

UI(I1 BeWeCTBa HanOBepXHOCTrl H yC,IOBWIMHCHMMeTpWfnO OTHOUICHIIH) K I,eHTpy, UeHTpanbHOfi OCH 

Hflu UeHTpanbHOfi nJEOCKOCTU CuCTeMbI. B KOHeYHOM C'feTe, er0 MOxHO WSnO,,b30BaTb JUI,-i pW,eTa 

BpCMeHHOii JBBACHMOCTH C,W,Heii KOHUeHTpaLWi II BCJIWiiHbI IIOTOKI, npWIeM pe3,‘JIbTaTbI XOpOUrO 

COrJIaCylOTCSl C aHWIHTAPeCKHM&i A ‘IRCJICHHbIMA peUIeH&iKMH. 


